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Abstract 
 

This study examines the relationship between climate policy uncertainty and the demand for 
renewable energy in the United States. The primary findings suggest that there is a nonlinear 
threshold effect resulting from climate policy uncertainty, as measured by the Climate Policy 
Uncertainty Index (CPU) and the Environmental Policy Uncertainty Index (ENVPU), on 
renewable energy demand (REC). The findings indicate a negative relationship between the 
CPU and the REC when the CPU is beyond a specific threshold. This suggests that economic 
agents adopt a cautious approach, sometimes referred to as the "wait and see" policy, in their 
renewable energy allocation. In essence, customers may opt to reduce their utilization of 
renewable energy in favor of alternate sources as a means to circumvent the investment risks 
associated with renewable alternatives. 
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I. Introduction 
 
The severe risks and uncertainties associated with climate change have the potential to 

adversely impact both the environment and the global economic system. As such, climate 

change has gained prominence and come to the forefront of global policy discussions 

(Sadorsky, 2008; Chen et al., 2021; Shang et al., 2022). In response to this collective issue, 

world governments have, through international negotiations, agreed upon and adopted policy 

measures to mitigate the effects of climate change. For instance, the 1997 Kyoto Protocol 

established binding emissions reduction targets for specific nations and pledged state parties to 

reduce greenhouse gas (GHG) emissions to an average of 5.2% below 1990 levels for the period 

of 2008 to 2012 (UNFCCC, 1997; Miyamoto & Takeuchi, 2019; Najarzadeh et al., 2021). The 

Paris Agreement of 2015 is another example, in which signatory states committed to pursue 

the efforts to limit temperature increase to 1.5℃ above pre-industrial levels and hold the 

increase in global average temperature below 2℃ (UNFCCC, 2015; Bauer & Menrad, 2019). 

The recent COP26 in Glasgow marked a significant milestone, as 153 countries pledged to 

achieve net zero emissions by 2050 (UNFCCC, 2022; Ma et al., 2023; Cao et al., 2023). 

 Despite the global commitment to address the issues pertaining to and mitigate climate 

change, significant uncertainties persist in the implementation of climate policy. For instance, 

Noailly et al. (2022) highlighted that, during the Trump Administration, a numerous amount 

of climate policies from previous administrations, most notably those of the Obama 

Administration, were rolled back. Several examples include the decision to withdraw from the 

Paris Agreement and the revocation of the Clean Power Plan, which were politically-motivated 

decisions that heightened the uncertainty for economic actors (Li et al., 2022). This reversal of 

policies had contradicted the previous administrations’ efforts to transition from non-renewable 

to renewable energy consumption in order to move towards carbon neutrality. Consequently, 

this abrupt policy change caused a substantial shock to climate policy uncertainty (CPU), as 

depicted in Figure 1 and Figure 2. 

  



 

Figure 1. Climate Policy Uncertainty in the US  
Source: Gavriilidis, 2021 

 

Figure 2. Climate Policy Uncertainty in the US between 2009-2022 
Source: Gavriilidis, 2022 

 With that in mind, the current literature have discussed the potential of REC as a method 

to mitigate climate change (Anwar et al., 2021; Gozgor et al., 2020), as well as the factors that 

affect the consumption of renewable energy, including economic growth (Ocal & Aslan, 2013, 

Apergis & Danuletiu, 2014; Sari et al., 2008), oil prices (Brini et al., 2017; Sahu et al., 2022; 

Murshed & Tanha, 2021), and carbon dioxide emissions (Sadorsky, 2009; Olanrewaju et al., 



2019; Karaaslan & Camkaya, 2022; Menyah & Wolde-Rufael, 2010). Despite this, the 

discourse has yet to establish the connection between CPU and REC. As CPU is a relatively 

novel metric, we have only found four papers examining this relationship directly. Shang et al. 

(2022), using an ARDL model, found that CPU has no effects on REC. To account for 

structural breaks in the series, Syed et al. (2023) utilized a Fourier-Augmented ARDL model, 

in which they found that CPU negatively affects REC. Zhou et al. (2023) found that CPU 

positively affects REC in most time periods. Meanwhile, Li et al. (2023) utilized a VAR model 

with a time-varying rolling-window bootstrap causality test and found that the effect of CPU 

on REC differs by time, mainly due to the government’s attitude driving the CPU shocks. 

 That said, this paper analyzes the nonlinear threshold effects of CPU on REC. This 

paper focuses on the monthly data from the United States, starting from 1987M04 – 2022M08. 

The motivation behind selecting the US for this analysis is that it is an advanced economy 

ranked first in terms of the amount of fossil fuel consumption per capita in 2022, at around 

63,836 kWh (OurWorldinData, 2022). It is also lagging behind many other countries in terms 

of renewable energy investment as a percentage of GDP, as the US had only invested 0.2% in 

the year 2015, while others had invested more, such as South Africa (1.4%), China (0.9%), and 

India (0.5%), among others. However, the findings of this paper should be relevant for other 

developing countries aiming to implement policies incentivizing renewable energy 

consumption. Using the novel climate policy uncertainty index developed by Gavriilidis 

(2021), which follows the methods of Baker, Bloom, and Davis (2016), inference could be 

made regarding the existence and magnitude of the effect of CPU on REC. 

 The contributions of this paper are as follows. The first is in consideration with the 

current literature on CPU-REC, as the findings of one paper may contradict the findings of 

other paper. Second, past researches have only looked into the CPU-REC nexus using linear 

models, which assume that the behavior of economic actors do not change with different levels 

of uncertainty. These examples are shown in the prior discussion. The last contribution is 

towards policymakers, as this study provides insights into how the economy reacts to CPU with 

respect to their consumption of renewable energy based on different regimes of uncertainty. 

Due to these insights, policymakers should be able to infer the best method of enacting new 

climate policies to ensure that the uncertainty does not pose adverse effects on the consumption 

of renewable energy. 

The rest of the paper is organized into five more sections. Section 2 reviews the literature 

on the CPU-REC nexus and the factors that influence REC. Section 3 discusses the 

methodology used to observe the nonlinear threshold effects, including the pretests, the main 



model, and its assumptions. Section 4 presents the main results and robustness checks. Section 

5 discusses the results. Section 6 concludes the paper by summarizing the findings and 

providing implications. 

II. Motivation and Literature Review 
 
The bulk of research on renewable energy consumption have been centered around the 

Environmental Kuznets Curve (EKC), including Sari et al. (2008), Ocal & Aslan (2013), 

Apergis & Danuletiu (2014), Bimanatya & Widodo (2018), Alam et al. (2022), among others. 

This is not surprising, as studying the effect of climate policy uncertainty have been tedious 

prior to the development of the CPU index by Gavriilidis (2021). With the presence of the new 

metric, several studies began the examination on the effect of CPU on REC. One such study 

was Shang et al. (2021), who adopted the ARDL approach to find the short and long-run 

impacts of climate policy uncertainty on non-renewable and renewable energy consumption. 

Their findings indicated that CPU does not significantly affect REC in both the short or long 

term, although there does seem to be a negative effect of CPU on fossil fuels. 

 Meanwhile, Zhou et al. (2023) followed a different approach, as they explored the time-

varying relationship between CPU, oil prices, and REC. Using a time-varying parameter vector 

autoregressive (TSP-SV-VAR) model, they found that CPU positively affects oil prices and 

REC in most time periods. They explained the validity of their results as being due to the aim 

of climate policy, which tends to be reducing carbon emissions, thus incentivizing the 

consumption of renewable energy. This is unlike the effect of economic policy uncertainty on 

REC, which, according to Shafiullah et al. (2021), tends to be negative. 

 Similarly, Li et al. (2023) had also delved into the CPU-REC relationship while also 

considering time-varying effects. In doing so, they estimated a VAR model with an additional 

time-varying rolling-window bootstrap causality test to account for structural changes and 

parameter instability, which resulted in the procurement time-varying causality in various 

subsamples. They discovered that the causality between CPU and REC varies depending on 

the attitude of the authorities towards the mitigation of climate change. This implies that 

regimes that are generally supportive of mitigating climate change will see a positive CPU-

REC nexus, and vice versa. 

 In an attempt to find the impacts of uncertainty on the  five types of renewable energy 

consumption, Xi et al. (2023) employed a vector autoregressive (VAR) model with Granger 

causality tests. They found that, in average, CPU affects REC, and solar as well as wind energy, 

but not geothermal nor hydroelectric energy. After applying time-varying tests, while no 



impacts were found on geothermal energy consumption, there were impacts on the other types, 

although discontinuously. Thus, Xi et al. (2023) concluded that the influence of CPU on REC 

varies with time. 

 Syed et al. (2023), in an attempt to also consider structural breaks in modelling the 

CPU-REC nexus, utilized a Fourier Augmented ARDL (FA-ARDL) model. They found that 

CPU decreases REC in both the short and long-run, and could be attributed to the lack of clarity 

in relation to long-term planning and the investment to consume renewable energy, as well as 

individuals taking a “wait and see” policy by purchasing non-renewable energy until the policy 

landscape becomes more certain. 

 Aside from the CPU-REC nexus, other studies had looked into the effect of the 

economic policy uncertainty (EPU) on REC, such as Shafiullah et al. (2021), who discovered 

through a nonlinear model and Granger causality analysis that there does exist a nonlinear 

causal effect of EPU on REC, which is negative in the long-run. Yi et al. (2023) utilized a CS-

ARDL model on a panel of top renewable energy consuming countries and found that EPU 

negatively affects REC in both the short and long-run. Ivanovski & Marinucci (2021), using 

numerous parametric models, found that EPU is negatively associated with REC. Feng & 

Zheng (2022) used panel fixed effects on 22 countries to find that EPU has a positive effect on 

renewable energy innovation. Additionally, further subsample analysis helped them in 

confirming that OECD members and right-wing countries tend to have higher growth in 

renewable energy. 

 As for the factors that may have an effect on REC, previous literature suggest three 

factors that may be of interest. The first factor is economic growth, commonly proxied by GDP 

growth or industrial productivity. Previous researches posit that higher growth may lead to 

increases in income, thus increasing the accessibility of renewable energy to consumers. 

Several studies have found this to be the case, such as Ocal & Aslan (2013), who found that 

there exists a unidirectional causality between economic growth and REC in Turkey using the 

ARDL and Toda-Yamamoto Causality tests. Apergis & Danuletiu (2014) provided evidences 

for long-run positive bidirectional causality between GDP and REC using the Canning-Pedroni 

Dynamic Error Correction Model (ECM) from 80 countries.  

 The second factor commonly discussed in modelling REC is carbon dioxide emissions 

(CO2), which, according to Bhattacharyya (2012) and Goldemberg (2004), is the primary 

catalyst of REC. Considering that the modern world has become heavily reliant on fossil fuels 

and non-renewable energy sources, there has been a drastic increase in the concentration of 

greenhouse gases (GHG), which also include CO2. This, in turn, leads to the abnormal changes 



in the earth’s climate. Thus, CO2 emissions serve as a warning to the global economy, 

incentivizing consumers to shift to renewable sources of energy for their daily consumption of 

energy to mitigate climate change. This has been shown to be the case by Sadorsky (2009), for 

instance, who found that per capita income and CO2 emissions increase REC in G7 countries. 

Olanrewaju et al. (2019), within the context of the African states, found that CO2 emissions 

are negatively associated with REC. Meanwhile, other studies found that REC impacts CO2 

emissions. Karaaslan & Camkaya (2022), within the context of the use of ARDL and Toda-

Yamamoto Causality test by Turkey, found a unidirectional causal effect between REC and 

CO2 emissions in the long-run. In contrast to both these strands of research, Menyah & Wolde-

Rufael (2010), using a modified Granger Causality test, found no causal relationship between 

REC and CO2 emissions. 

 Another factor that may be considered is the price of oil, typically proxied by the West 

Texas Intermediate (WTI) crude oil prices, given that REC acts as a substitute for non-

renewable sources of energy, which could be affected by the changes in oil price. For example, 

Brini et al. (2017) utilized the data from Tunisia covering the period of 1980 to 2011 using the 

ARDL model, and found that oil prices are positively associated with REC. In the United 

States, Sahu et al. (2022) used the Nonlinear Autoregressive Distributed Lag (NARDL) model 

and found that both an increase in GDP and oil prices increase REC in both the short and long-

run. 

III. Methodology 

3.1 Data 

For the purpose of this study, the paper focuses on the United States economy with the monthly 

data from 1987M04 to 2022M08. The dependent variable is the aggregate of renewable energy 

consumption (REC) from several sectors of the United States production side, of which the 

data are collected from the Energy Information Administration (EIA). The sources of energy 

recorded by the EIA include biomass, hydropower, geothermal, wind, and solar power.  

Meanwhile, the independent variable of interest, namely the CPU, is collected from the 

online repository for policy uncertainty, with data from Gavriilidis (2021). Note that the data 

for the CPU is only available for the US. While other indicators for CPU exist, the only one 

made publicly available is the one by Gavriilidis (2021). The covariates we include, following 

the factors that affect REC discussed previously, are the CO2 emissions (CO2), the Index of 

Industrial Productivity (IIP), and the West Texas Intermediate Oil Prices (WTI). The CO2 data 



are also sourced from the EIA, while the IIP and WTI are sourced from the Federal Reserve 

Economic Data (FRED). 

We also source other data for the purpose of checking the robustness of our estimations. 

To ensure the robustness of the model with regard to the main variable of interest, we substitute 

the CPU for the Environmental Policy Uncertainty (ENVPU) index in one of our iterations. 

While it is essentially the same as the CPU, the ENVPU, developed by Noailly et al. (2022), 

uses a similar word search strategy strengthened with a Support Vector Machine (SVM) 

algorithm to classify whether an article constitutes uncertainty. They had argued that their 

method produces better predictions of uncertainty within the corpus of articles compared to the 

algorithm used by Gavriilidis (2021), which is based on the search strategy by Baker, Bloom, 

& Davis (2016). Noailly et al. (2022) found that their algorithm has a larger recall rate than the 

algorithm by Baker, Bloom, & Davis (2016), with the ENVPU having 70% recall rate while 

the other having only 8%. This means that, with regard to the true positives being correctly 

classified as uncertainty, the SVM algorithm performs substantially better, and the ENVPU is 

thereby a better metric. This data is sourced from the author’s repository, but has lower 

observations, as the data spans only from 1990M01 to 2019M03. 

Moreover, we also use the data on the household renewable energy consumption 

(RECHH) to find whether the same effect the CPU has on REC also holds in the household 

context. This data is sourced from the CEIC, with the monthly periodicity that is the same with 

the number of periods for the complete dataset. 

3.2 Conceptual Framework 

Considering the existing studies that have discussed the determinants of renewable 

energy demand, we employed the Threshold Autoregressive (TAR) model to estimate the 

nonlinear threshold effects of the CPU on REC. Borrowing the method of Bunzel and Enders 

(2010), the TAR model in this case can be specified as: 

 

 
 

In this model, RECt is the renewable energy consumption at time t, which in this case would 

be in monthly intervals. Meanwhile, CPUt is the climate policy uncertainty index, RECt-n are 

the lagged covariates of REC at time t-n, CO2t is the CO2 emissions, WTIt is the West Texas 



Intermediate Crude Oil Price, and IIPt is the Industrial Production Index at month t. The ∆ 

symbol denotes the variable which will be differentiated, and L denotes the natural logarithmic 

transformation that will be applied to the set of variables. Meanwhile, 𝜙𝜙𝑣𝑣,𝑟𝑟 denotes the 

coefficient values for variable v in regime r. ∆𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑡𝑡−𝑑𝑑 < 𝑐𝑐 and ∆𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑡𝑡−𝑑𝑑 ≥ 𝑐𝑐  are the 

thresholds, with ∆𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑡𝑡−𝑑𝑑, or the log-differenced climate policy uncertainty variable at month 

t, delayed by d months, as the threshold variable and c as the threshold value. 

3.3 Econometric Procedures 

To avoid the problem of spurious regression, the importance of which was noted by 

Newbold and Granger (1974), employing unit root tests to find the order of integration of each 

series is crucial before employing further regression analyses. By doing so, we would be able 

to maintain the stationarity of the data. To find the level of integration, we employed three 

standard unit root tests, which are the Augmented Dickey-Fuller (ADF) test (1979), Philips-

Perron (PP) test (1988), and the Kwiatkowski-Philips-Schmidt-Shin (KPSS) test (1992).  

 However, it is also possible that structural breaks occur within the data points, and this 

might lead to the questionable validity of the prior tests. To ensure that the series are truly 

integrated at the level predicted from the prior tests, we employed the Zivot-Andrews (2002) 

breakpoint unit root tests. Despite seasonal unit roots being a possible issue, we had already 

dealt with this possibility using the STL decomposition for the first-differenced series, while 

the seasonally-differenced series had already dealt with the issue entirely. 

 To validate the use of the TAR model, which is a nonlinear model, we first tested 

whether nonlinearities exist in the data series. To do so, we employed the Brock-Dechert-

Scheinkman-LeBaron (BDS) independence test (1996), which is a portmanteau test for time-

based dependence in a series, without a specific alternative hypothesis (Enders, 2014). Thus, if 

the null hypothesis of linear dependence is rejected, there exists nonlinearities within the data. 

To further validate the results of the BDS test, we also applied the McLeod-Li test (1983), 

which is the exact Lagrange Multiplier (LM) test for ARCH errors, as it has great power to find 

numerous forms of nonlinearities (Enders, 2014).  

 After testing for the level of integration as well as for the presence of nonlinearities 

within the data, we then estimated the TAR model as specified before. To evaluate the model, 

we must ensure that the TAR model is stable and robust to the lag of the threshold. With regard 

to the stability of the model, recall from the original paper regarding the TAR model by Tong 

and Lim (1980) that the base assumption of the TAR model is the existence of a stable limit 



cycle. As such, the model itself is defined as the stabilizer of a nonlinear function to ensure the 

convergence of the recursion. Thus, the convergence of the TAR model itself is a testament to 

the stability of the model. Meanwhile, to test the robustness to the lag of the threshold, if we 

suppose that we procure a model with a threshold lag of t-d, then we can reiterate the model 

with a maximum lag of t-d-n, where n adds to the maximum lag. If the selected lag for the 

threshold persists, then the model is robust to the lag of the threshold. 

IV. Main Results and Discussion 
 
4.1 Unit Root and Linearity Tests 

Before proceeding to the unit root and linearity tests, it is important to check the 

descriptive statistics of all of the series used in this analysis, which are compiled in Table 1 and 

illustrated in Figure 3. The total sample in the dataset are 425 observations, with the exception 

of the ENVPU, which only has 351 observations. From the summary in Table 1, while the other 

variables tend to be normal, the CPU seems to be rather skewed and may have heavier tails 

than the normal distribution. Thus, we applied log-transformed variables to normalize the data 

points. 

 
 CPU REC CO2 IIP WTI ENVPU RECHH 

Mean 100.0000 647.0932 450.2453 87.13729 46.77831 100.0000 52.60569.60569 

Median 86.59016 563.8750 450.6330 92.16290 38.03000 96.053 51.28300 

Maximum 411.2888 1200.249 560.7700 106.1340 133.8800 174.641 85.90400 

Minimum 28.16193 395.8400 305.2040 56.72620 11.35000 44.914 32.33000 

Std. Deviation 55.65215 189.0841 42.77749 14.75428 29.38094 25.519 12.55499 

Skewness 2.019945 0.881984 0.143427 -0.72566 0.741345 0.407 0.649977 

Kurtosis 8.075493 2.627666 2.896946 2.043739 2.411435 2.589 2.699449 

Jarque-Bera 745.1903 57.55585 1.645202 53.49270 45.06379 12.160 31.52460 

Observations 425 425 425 425 425 351 425 

Table 1. Descriptive Statistics 

 



 
Figure 3. Dataset Series 1987-2022 

 

 Moving on to the unit root tests, we applied the standard unit root tests, which include 

the Augmented Dickey-Fuller tests, Phillips-Perron tests, and the KPSS tests in Table 2, and 

the Zivot-Andrews unit root tests in Table 3, to account for structural breaks that may occur 

within the series. From Table 2, we can infer that all of the data series are integrated at I(1). 

We also reached this conclusion from the Zivot-Andrews test in Table 3. 

To support the use of a nonlinear threshold model, we applied the BDS Test for linearity 

and the McLeod-Li test, which are reported in Table 4 and Appendix 1, respectively. The 

results in Table 4 suggest that the null hypothesis that the series are linearly dependent is 

rejected. The findings in Appendix 1 add to the robustness of the previous findings, as the null 

hypothesis that the series are linear is rejected. However, do note that these findings do not 

suggest the shape of the nonlinearity, although we can reasonably conclude that nonlinearities 

exist in the data. Thereby, we can estimate a TAR model. 

 
 Augmented Dickey-Fuller 

Test 
Phillips-Perron Test Kwiatkowski-Phillips-

Schmidt-Shin Test 

 Level 1st Diff Level 1st Diff Level 1st Diff 
Climate Policy Uncertainty 
 None 0.479 -13.26*** 0.251 -85.26***   
 Intercept -2.326 -13.27*** -10.36*** -119.9*** 1.646*** 0.246 

 Trend and 
Intercept 

-5.903*** -13.27*** -14.04*** -137.2*** 0.364*** 0.245*** 



CO2 Emission 
 None -0.044 -5.496*** 0.392 -59.58***   
 Intercept -1.810 -5.489*** -7.844*** -59.48*** 0.673** 0.246 
 Trend and 

Intercept 
-1.922 -5.649*** -7.843*** -59.16*** 0.665*** 0.127* 

Renewable Energy Consumption 
 None 1.882 -4.841*** 0.859 -36.16***   
 Intercept 0.075 -5.399*** -1.626 -37.26*** 2.161*** 0.048 

 Trend and 
Intercept 

-1.527 -5.494*** -4.778*** -38.90*** 0.511*** 0.017 

WTI Crude Oil Price 
 None 0.231 -15.41*** 0.559 -14.78***   
 Intercept -1.962 -15.40*** -1.479 -14.79*** 1.973*** 0.043 

 Trend and 
Intercept 

-3.410* -15.39*** -2.718 -14.76*** 0.274*** 0.043 

Environmental Policy Uncertainty 
 None -0.200 -13.13*** -0.152 -148.9***   
 Intercept -6.084*** -13.11*** -12.64*** -151.7*** 0.389* 0.155 
 Trend and 

Intercept 
-6.193*** -13.09*** -12.76*** -156.7*** 0.163** 0.154** 

Industrial Productivity 
 None 1.650 -4.087*** 2.105 -30.07***   
 Intercept -1.649 -5.010*** -1.987 -31.43*** 2.159*** 0.225 

 Trend and 
Intercept 

-1.690 -5.097*** -2.118 -31.19*** 0.529*** 0.048 

*, **, and *** indicate significance level at 10%, 5%, and 1%. 
Table 2. Standard Unit Root Tests on Dataset 

 
 

Series  Constant  Trend  Constant & Trend 
  Min t-stat Break Min t-stat Break Min t-stat Break 
LCPU Level -4.134 2016M09 -3.844 2014M04 -4.075 2016M09 
 Seas. 

Diff 
-7.538*** 2016M03 - - -7.612*** 2016M03 

LCO2 Level -3.081 1995M07 -4.231* 2004M01 -4.281 2008M02 
 Seas. 

Diff 
-6.707*** 2008M02 -6.482*** 1995M09 -6.794*** 2008M02 

LREC Level -3.589 1997M11 -3.402 2001M10 -4.854* 2000M05 
 Seas. 

Diff 
-5.466*** 2001M12 -4.869*** 1998M11 -6.004*** 2001M12 

LWTI Level -4.573 2014M08 -3.694 2010M11 -4.570 2003M10 
 Seas. 

Diff 
-4.377 2008M07 -3.996 2016M08 -4.686 2014M07 

LENVPU Level -4.416 2004M02 -3.716 2008M02 -4.552 2004M02 
 Seas. 

Diff 
-5.666*** 2008M06 -5.554*** 1994M05 -5.653*** 2007M09 

LIIP Level -4.344 1996M02 -5.036*** 2000M07 -5.137** 1997M08 
 Seas. 

Diff 
-4.206 2000M07 -4.061 1994M02 -4.515 2000M07 

*, **, and *** indicate significance level at 10%, 5%, and 1%. 
Table 3. Zivot-Andrews Structural Unit Root Test Results 

 
 



 BDS Stat. Std. 
Error 

z-Stat. Prob. Raw 
Epsilon 

Pairs 
with 
Epsilon 

Triples 
with Eps. 

Climate Policy Uncertainty 
 2  0.077451  0.004  21.364  0.0000    
 3  0.129837  0.006  22.527  0.0000    
 4 

 0.162895  0.007  23.730  0.0000 
0.677829 127315.0 4100437

3 
 5  0.178910  0.007  25.003  0.0000  V-Stat: V-Stat: 
 6  0.184340  0.007  26.712  0.0000  0.704858 0.534150 
CO2 Emission    
 2  0.073523  0.003  26.114  0.0000    
 3  0.107972  0.004  24.184  0.0000    
 4 

 0.119859  0.005  22.604  0.0000 
0.140891 127203.0 4029717

3 
 5  0.123901  0.006  22.480  0.0000  V-Stat: V-Stat: 
 6  0.127872  0.005  24.128  0.0000  0.704238 0.524938 
Renewable Energy Consumption    
 2  0.166916  0.003  64.002  0.0000    
 3  0.286496  0.004  69.172  0.0000    
 4 

 0.369377  0.005  74.982  0.0000 
0.444801 127449.0 4028060

3 
 5  0.426271  0.005  83.137  0.0000  V-Stat: V-Stat: 
 6  0.466022  0.005  94.393  0.0000  0.705600 0.524722 
WTI Crude Oil Price    
 2  0.183153  0.002  92.030  0.0000    
 3  0.308828  0.003  97.825  0.0000    
 4 

 0.393758  0.004  105.01  0.0000 
1.067691 127463.0 3980071

1 
 5  0.450577  0.004  115.61  0.0000  V-Stat: V-Stat: 
 6  0.487993  0.004  130.23  0.0000  0.705678 0.518470 
Environmental Policy Uncertainty    
 2  0.031129  0.003  10.221  0.0000    
 3  0.050972  0.005  10.530  0.0000    
 4 

 0.058610  0.006  10.172  0.0000 
0.390901 86943.00 2276786

5 
 5  0.061004  0.006  10.165  0.0000  V-Stat: V-Stat: 
 6  0.059673  0.006  10.318  0.0000  0.705700 0.526503 
Industrial Productivity    
 2  0.198684  0.004  55.352  0.0000    
 3  0.340272  0.006  60.045  0.0000    
 4 

 0.440002  0.007  65.645  0.0000 
0.313233 126429.0 4044703

3 
 5  0.509573  0.007  73.441  0.0000  V-Stat: V-Stat: 
 6  0.558012  0.007  83.969  0.0000  0.699953 0.526890 

*, **, and *** indicate significance level at 10%, 5%, and 1%. 
Table 4. Brock-Dechert-Scheinkman-LeBaron (BDS) Test Results 

 

4.2 Main Results 

The main results of the TAR model are reported in Table 5. As shown in Table 5, from 

the Bai-Perron Sequential L+1 Threshold vs L threshold selection, we acquire a threshold of 

0.347 at lag 15, or a threshold set one year and three months prior to the current time t. This 

threshold selection is found to be robust to the lag of the threshold, as larger maximum lag 



selections do not change the threshold value selection and threshold lag. That said, the results 

in Table 5 suggest a negative nonlinear effect of CPU on REC, as the effects below and above 

the threshold are different. At the regime below the threshold, the effect of CPU on REC is not 

statistically significant, while only the covariates for REC at lag 1, lag 3, along with the index 

of industrial productivity are statistically significant and positive. 

 
Below Threshold (ΔLCPU(-15) < 0.3469225) – 295 Observations 

Variable Coefficient Std. Error t-Statistic Prob.* 

C 0.000865 0.003042 0.284284 0.7763 

Seas ΔLCPU 0.004166 0.006158 0.676496 0.4991 

Seas ΔLREC(-1) 0.727514*** 0.058747 12.38375 0.0000 

Seas ΔLREC(-2) -0.104108 0.071017 -1.465961 0.1435 

Seas ΔLREC(-3) 0.238521*** 0.058478 4.078843 0.0001 

First ΔLIIP 0.638408** 0.298019 2.142171 0.0328 

Seas ΔLCO2 0.020369 0.063281 0.321886 0.7477 

First ΔLWTI 0.024522 0.033460 0.732883 0.4641 

Above Threshold (ΔLCPU(-15) >= 0.3469225) – 103 Observations 

Variable Coefficient Std. Error t-Statistic Prob.* 

C 0.014263*** 0.005369 2.656476 0.0082 

Seas ΔLCPU -0.042094*** 0.011864 -3.547980 0.0004 

Seas ΔLREC(-1) 0.614676*** 0.085307 7.205422 0.0000 

Seas ΔLREC(-2) -0.055285 0.111792 -0.494531 0.6212 

Seas ΔLREC(-3) 0.131103 0.086688 1.512349 0.1313 

First ΔLIIP 0.805443** 0.398331 2.022046 0.0439 

Seas ΔLCO2 -0.256124** 0.102485 -2.499142 0.0129 

First ΔLWTI -0.029500 0.048146 -0.612734 0.5404 

R-Squared 0.621082 Log-Likelihood 646.6672 

Adjusted R-Squared 0.606203 Akaike Info Criterion -3.169182 

F-Statistic 41.74228 Schwarz Criterion -3.008923 

Prob(F-Statistic) 0.000000 Hannan-Quinn Criterion -3.105705 

*, **, and *** indicate significance level at 10%, 5%, and 1%. 
Table 5. Main Results using Threshold Autoregression (TAR) Estimation 

  

Meanwhile, the relationship between CPU and REC at the regime above the threshold 

level is found to be statistically significant and negative. This suggests that, when uncertainty 

grows at a level above the threshold 15 months prior, the CPU affects REC negatively. These 

findings are in accordance with the findings of Syed et al. (2023), Zhou et al. (2023), and Li et 



al. (2023). However, these findings are unlike the findings of Shang et al. (2022), as they found 

that the effect of CPU on REC is not statistically significant. While their findings are similar 

to the results below the threshold, Shang et al. (2022) were not able to capture the nonlinear 

effect of CPU on REC above the threshold.  

 Regarding the threshold lag, it is reasonable to attribute this distant time to the time it 

takes to make a decision to consume renewable energy and making the necessary investments 

when it comes to companies generating their own source of renewable energy. Note that the 

data collected from the EIA are the sectoral data of the production side. Bhattacharyya (2012) 

discussed how energy projects tend to be more capital intensive, has a high degree of asset 

specificity, and has a generally longer life of assets and gestation periods. Thus, uncertainty 

could affect a company’s decision to implement these projects for the sake of REC. Syed et al. 

(2023) noted a similar issue surrounding the uncertainty of the Production Tax Credit (PTC) 

for renewable energy consumption, which leads to difficulties in long-term planning and 

investment. As such, in accordance with Syed et al. (2023), the distance between current 

consumption and the threshold lag is rather reasonable. 

 Regarding the other variables, the first lag of the REC is significant and positive in both 

regimes but is slightly less positive above the threshold. Meanwhile, the quarterly lag of the 

REC is only significant under the threshold, suggesting that the consumers are less sensitive to 

older periods when uncertainty is high. The effect of the IIP is significant in both regimes, and 

becomes more positive above the threshold, which is similar to the findings of Shang et al. 

(2022), who had also found a significant positive effect of economic growth on REC. While 

the WTI does not seem to affect REC, CO2 emissions are associated with the decreases in REC 

above the threshold. Although quite surprising, this finding is in line with the finding of Syed 

et al. (2023), who found that the effect of CO2 on REC is negative in both the short and long-

run. This could be due to the CO2 emissions capturing the effects of an increase in non-

renewable energy consumption that is not captured by other variables. 

 

4.3 Robustness Checks 

To verify the robustness of the main results, Table 6 reports the results of the TAR 

estimation using the household renewable energy consumption (RECHH) as the dependent 

variable. Note that we instead use the first-differenced log-transformed version of the CO2 

emissions variable, as using the seasonally-differenced variables lead to non-robust models due 

to the lag of the threshold. That said, the results in Table 6 suggest that there does exist a 



nonlinear threshold effect of the CPU on REC, but the direction is different in comparison to 

Table 5. While no significant effect of CPU on REC occurs below the threshold, the effect 

above the threshold is positive and statistically significant at 1%, and could be interpreted as a 

1% increase in CPU, which is associated with a 0.046% increase in RECHH. Although this 

differs from the findings in the previous model, the shocks captured in the CPU by Gavriilidis 

(2021), in the context of household consumers, mostly pertain to policies aimed at reducing the 

CO2 emissions from non-renewable energy consumption. This could thus be interpreted as the 

adoption of a “just-in-case” policy. 

In addition, the lags of the RECHH for all months above the threshold are statistically 

significant, unlike those below it, in which only the first lag is positively associated with the 

current RECHH. This may imply that, beyond a certain level of uncertainty, household 

consumers are more cautious and responsive to past consumption of renewable energy. In line 

with Bhattacharyya (2012), CO2 emissions also positively affects RECHH just as it does the 

REC, though its effects are intensified by 1.976 percentage points. The implication is that 

household consumers are more sensitive to changes in CO2 emissions as compared to 

producers above a certain threshold. 

Following the “just-in-case” policy derived from the previous discussion, which shows 

the divergence in the behavior of companies and household consumers, it may be the case that 

the context behind the policy uncertainty affects the reaction of economic actors. Recall Li et 

al. (2022), who found that the effect of CPU on REC is dependent on the regime by which the 

uncertainty is founded. Hence, depending on the contextual attitude of the authorities, the 

relationship between CPU and REC may differ. We explore this possibility by removing the 

observations of the Trump Administration in the following results reported in Table 7 and 

Table 8. 

 

 

 
Below Threshold (ΔLCPU(-7) < 0.5134778) – 346 Observations 

Variable Coefficient Std. Error t-Statistic Prob.* 
C -0.001307 0.002510 -0.520572 0.6030 

Seas ΔLCPU 0.007920 0.005582 1.418947 0.1567 
Seas ΔLRECHH(-1) 0.938716*** 0.046169 20.33214 0.0000 
Seas ΔLRECHH(-2) 0.011640 0.062140 0.187322 0.8515 
Seas ΔLRECHH(-3) -0.041244 0.045725 -0.901992 0.3676 

First ΔLIIP 0.348027 0.264887 1.313866 0.1897 
First ΔLCO2 0.148300* 0.088317 1.679174 0.0939 



First ΔLWTI -0.011353 0.028495 -0.398425 0.6905 
Above Threshold (ΔLCPU(-7) >= 0.5134778) – 60 Observations 

Variable Coefficient Std. Error t-Statistic Prob.* 
C 0.009389 0.006360 1.476224 0.1407 

Seas ΔLCPU 0.046226*** 0.013834 3.341413 0.0009 
Seas ΔLRECHH(-1) 0.947769*** 0.284631 3.329812 0.0010 
Seas ΔLRECHH(-2) -0.759567* 0.410522 -1.850248 0.0650 
Seas ΔLRECHH(-3) 0.654903** 0.316697 2.067917 0.0393 

First ΔLIIP -1.041602** 0.437778 -2.379291 0.0178 
First ΔLCO2 2.123972*** 0.221181 9.602863 0.0000 
First ΔLWTI -0.072532 0.060618 -1.196527 0.2322 
R-Squared 0.851241 Log-Likelihood 682.5328 

Adjusted R-Squared 0.845520 Akaike Info Criterion -3.283413 

F-Statistic 148.7796 Schwarz Criterion -3.125527 

Prob(F-Statistic) 0.000000 Hannan-Quinn Criterion -3.220925 

*, **, and *** indicate significance level at 10%, 5%, and 1%. 
Table 6. TAR Estimation Results using Household Renewable Energy Consumption (RECHH) 

  

Prior to discussing the results, do acknowledge that the decision to exclude those 

observations are in accordance with Li et al. (2022), who found a negative effect of CPU on 

REC during the Trump Administration subsample, as well as Noailly et al. (2022), who, in the 

creation of their policy uncertainty metric, found that much of the policy shocks during the 

Trump Administration were due to the revocation of the policies of Obama’s Administration 

that were aimed at reducing carbon emissions. These policies include the Clean Power Plan, 

the US-China deal on climate change, the Paris Accord, and the Keystone XL pipeline project. 

Do note that this is not a partisan stance, but rather an opportunity to explore the possibility of 

contextual dynamics in CPU, assumed from prior US government documents and academic 

literature that support the idea that the previous administrations within the dataset pursued 

policies supporting climate mitigation, regardless of whether they succeeded (Wampler, 2015; 

Royden, 2002; Blanchard, 2003). Thus, we hypothesize from previous researches that this 

exclusion would result in a generally positive climate policy uncertainty shocks. 

Below Threshold (ΔLCPU(-15) < 0.4434905) – 281 Observations 
Variable Coefficient Std. Error t-Statistic Prob.* 

C -0.000575 0.003029 -0.189678 0.8497 

Seas ΔLCPU 0.002539 0.006470 0.392461 0.6950 

Seas ΔLREC(-1) 0.682733*** 0.057378 11.89894 0.0000 

Seas ΔLREC(-2) -0.070243 0.071355 -0.984418 0.3257 

Seas ΔLREC(-3) 0.257744*** 0.060449 4.263811 0.0000 



First ΔLIIP 0.467030 0.355702 1.312979 0.1901 

Seas ΔLCO2 -0.053130 0.074100 -0.716996 0.4739 

First ΔLWTI 0.005102 0.036639 0.139238 0.8894 

Above Threshold (ΔLCPU(-15) >= 0.4434905) – 50 Observations 

Variable Coefficient Std. Error t-Statistic Prob.* 

C 0.021686*** 0.008093 2.679538 0.0078 

Seas ΔLCPU -0.037364** 0.018458 -2.024326 0.0438 

Seas ΔLREC(-1) 0.883040*** 0.134146 6.582695 0.0000 

Seas ΔLREC(-2) -0.197998 0.164322 -1.204942 0.2291 

Seas ΔLREC(-3) -0.055362 0.115333 -0.480016 0.6315 

First ΔLIIP -2.518850** 1.026253 -2.454416 0.0147 

Seas ΔLCO2 -0.230994 0.201753 -1.144935 0.2531 

First ΔLWTI 0.092219 0.066359 1.389714 0.1656 

R-Squared 0.660796 Log-Likelihood 543.7721 

Adjusted R-Squared 0.644643 Akaike Info Criterion -3.188956 

F-Statistic 40.90958 Schwarz Criterion -3.005167 

Prob(F-Statistic) 0.000000 Hannan-Quinn Criterion -3.115653 

*, **, and *** indicate significance level at 10%, 5%, and 1%. 
Table 7. TAR Estimation Results using Sectoral Renewable Energy Consumption (REC) without 

Trump Administration 
 

The results in Table 7 show that the threshold lag is the same as in Table 5, but with a 

value of 0.443. The notable discovery from this exploration is that, above the threshold, while 

the directionality of the CPU coefficient is similar to the results in Table 5, it has become less 

negative, seeing a 0.005 percentage point increase in comparison to the prior calculation. 

Meanwhile, the lagged REC for the prior month is positive and statistically significant in both 

threshold regimes, while the quarterly lagged REC is only significant below the threshold, 

suggesting that the consumers are more sensitive to more recent consumption decisions. The 

effect of the IIP on REC is quite unexpected, as it is negative above the threshold. While this 

finding differs from Shang et al. (2022), who found that economic growth is positively 

associated with REC, and Syed et al. (2023), who found no significant effect of IIP on REC, 

our findings are observed above a certain threshold, in which companies could become more 

sensitive to uncertainty and prefer to reduce their REC when uncertainty persists, despite the 

better economic condition. 

As for the results on RECHH, as provided in Table 8, the selected threshold lag is similar 

to that in Table 6, though the threshold value is now 0.453. In comparison to the previous 

results in Table 6, the coefficient of the CPU above the threshold is also statistically significant 



and has increased by 0.046 percentage points. Similar to the previous estimation, the first lag 

of the RECHH is positive and statistically significant in both threshold regimes, while the 

second and third lags are significant only above the threshold, suggesting that household 

consumers are much more sensitive to decisions made during prior periods when uncertainty 

persists. Moreover, the CO2 emissions are positive and statistically significant in both regimes, 

but the effect becomes more pronounced above the threshold. In summary, akin to Li et al. 

(2022), we find suggestive evidences that the context of the CPU shocks may yield differing 

effects on REC. 

To further complement the prior results, a similar TAR estimation was done using the 

ENVPU index by Noailly et al. (2022) as a substitute for the CPU index. Do recall that these 

indices are conceptually similar and meant to capture similar shocks, although their formation 

are different. The results of this estimation are summarized in Table 9.  

A similar conclusion is found regarding the nonlinear effect, in which the estimations 

converge at lag 20. We find that, with regard to the other variables, it would seem that they 

behave similarly to prior estimations. However, instead of becoming more sensitive to the REC 

two and three months prior, as well as to CO2 emissions when uncertainty goes beyond a 

certain threshold, the consumers are now more reactive to the uncertainty in the current period 

and the previous period’s REC, as they are the only statistically significant variables above the 

threshold. 

  



Below Threshold (ΔLCPU(-7) < 0.4530624) – 289 Observations 
Variable Coefficient Std. Error t-Statistic Prob.* 

C -0.001919 0.002777 -0.691023 0.4900 
Seas ΔLCPU 0.009948 0.006155 1.616102 0.1070 

Seas ΔLRECHH(-1) 0.952834*** 0.049381 19.29542 0.0000 
Seas ΔLRECHH(-2) -0.012063 0.067164 -0.179606 0.8576 
Seas ΔLRECHH(-3) -0.032370 0.049359 -0.655820 0.5124 

First ΔLIIP 0.229617 0.334864 0.685701 0.4934 
First ΔLCO2 0.204942* 0.106924 1.916717 0.0562 
First ΔLWTI -0.009926 0.032961 -0.301135 0.7635 

Above Threshold (ΔLCPU(-7) >= 0.4530624) – 50 Observations 
Variable Coefficient Std. Error t-Statistic Prob.* 

C 0.007518 0.007151 1.051301 0.2939 
Seas ΔLCPU 0.092449*** 0.018352 5.037420 0.0000 

Seas ΔLRECHH(-1) 0.969519*** 0.326962 2.965235 0.0032 
Seas ΔLRECHH(-2) -0.848064** 0.387465 -2.188749 0.0293 
Seas ΔLRECHH(-3) 0.785132*** 0.259761 3.022515 0.0027 

First ΔLIIP -0.843560 0.849202 -0.993356 0.3213 
First ΔLCO2 2.070301*** 0.230714 8.973448 0.0000 
First ΔLWTI -0.081012 0.085420 -0.948400 0.3436 

R-Squared 0.856151 Log-Likelihood 568.1768 

Adjusted R-Squared 0.849470 Akaike Info Criterion -3.257680 

F-Statistic 128.1604 Schwarz Criterion -3.077102 

Prob(F-Statistic) 0.000000 Hannan-Quinn Criterion -3.185720 

*, **, and *** indicate significance level at 10%, 5%, and 1%. 
Table 8. TAR Estimation Results using Household Renewable Energy Consumption (RECHH) 

without Trump Administration 
 

Although the effect of the first period lag REC is expectedly positive, the effect of the 

ENVPU above the threshold is rather unexpected, since the coefficient is positive. These results 

imply that should the ENVPU 20 months prior surpass the threshold value, then a 1% increase 

in ENVPU is expected to increase REC by 0.024%. In light of these results along with the 

previous estimations, it can be inferred that a nonlinear threshold effect does exist from climate 

policy uncertainty to renewable energy consumption. As the effects of the uncertainty manifest 

above a certain threshold, this would suggest that when uncertainty is relatively low, other 

factors would better account for the variations in REC. 

Despite the clear inference for the first hypothesis, an intriguing divergence emerges when 

discussing the effects of climate policy uncertainty above a certain threshold, as using the CPU 

and ENVPU leads to different implications. This new set of results suggest that greater policy 

uncertainty is associated with the increases in REC. Note that these differences may be a result 

of the differences in the development of the CPU by Gavriilidis (2021) and the ENVPU by  



Below Threshold (ΔLENVPU(-20) < -0.1081249) – 119 Observations 
Variable Coefficient Std. Error t-Statistic Prob.* 

C 0.013342*** 0.004558 2.927187 0.0037 

Seas ΔLENVPU -0.016505 0.013078 -1.262023 0.2079 

Seas ΔLREC(-1) 0.728470*** 0.078675 9.259196 0.0000 

Seas ΔLREC(-2) -0.288773*** 0.099667 -2.897370 0.0040 

Seas ΔLREC(-3) 0.332661*** 0.086550 3.843563 0.0001 

First ΔLIIP 0.913965 0.574713 1.590299 0.1128 

Seas ΔLCO2 -0.293249** 0.114575 -2.559443 0.0110 

First ΔLWTI -0.047832 0.052312 -0.914361 0.3613 

Above Threshold (ΔLENVPU(-20) >= -0.1081249) – 200 Observations 

Variable Coefficient Std. Error t-Statistic Prob.* 

C -0.002304 0.003508 -0.656561 0.5120 

Seas ΔLENVPU 0.024283** 0.010107 2.402502 0.0169 

Seas ΔLREC(-1) 0.692033*** 0.072217 9.582752 0.0000 

Seas ΔLREC(-2) 0.114622 0.089257 1.284179 0.2001 

Seas ΔLREC(-3) 0.090973 0.067792 1.341953 0.1806 

First ΔLIIP -0.180619 0.404969 -0.446006 0.6559 

Seas ΔLCO2 0.059636 0.080749 0.738530 0.4608 

First ΔLWTI 0.047535 0.040185 1.182902 0.2378 

R-Squared 0.663763 Log-Likelihood 540.2831 

Adjusted R-Squared 0.647118 Akaike Info Criterion -3.287041 

F-Statistic 39.87672 Schwarz Criterion -3.098191 

Prob(F-Statistic) 0.000000 Hannan-Quinn Criterion -3.211622 

*, **, and *** indicate significance level at 10%, 5%, and 1%. 
Table 9. TAR Estimation Results using Environmental Policy Uncertainty (ENVPU) 

 

Noailly et al. (2022). Recall that, instead of using the naïve method of classification used by 

Gavriilidis (2021) following Baker et al. (2016), Noailly et al. (2022) uses an SVM algorithm 

to classify which article indicates uncertainty to develop their index. 

 According to Noailly et al. (2022), by testing their own algorithm against the algorithm 

used by Baker et al. (2016), they found out that the SVM algorithm has a larger recall rate, thus 

capable of capturing more true positives as compared to the naïve method used in the CPU. It 

can be said that the ENVPU is thus richer in information as compared to the CPU, which, 

according to Noailly et al. (2022), could lead to differences in the volatility of the index. From 

our calculations of the correlations and volatility of the indices in Table 10 as well as the visual 



form in Figure 4, we find that the CPU is considerably more volatile in comparison to the 

ENVPU, which is true for both at level and at first-differences. 

  

Correlation CPU ENVPU Std. Dev Volatility 

CPU 1.000000  55.65215 1147.298 

ENVPU 0.189888 1.000000 25.51904 478.0983 

Correlation ΔCPU ΔENVPU Std. Dev Volatility 

ΔCPU 1.000000  0.458980 9.327576 

ΔENVPU 0.215021 1.00000 0.321928 5.927323 

Table 10. Correlation Matrix and Volatility of CPU and ENVPU 
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Figure 4. Seasonally Differenced Log-Transformed Version of Selected Variables 
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Figure 5. Raw CPU (Gavriilidis, 2021) and ENVPU (Noailly et al., 2022) Comparison 

 

 Moreover, it is also possible that there are significant differences in the intensities of 

the uncertainty that has been captured. From Figure 5, it can be seen that the CPU had risen 

drastically around 2017, while the ENVPU did not increase to such a similar extent. 

Furthermore, prior to the turn of the millennia, the ENVPU seems to be relatively higher 

compared to the CPU. Thus, it would seem that the CPU captures much greater uncertainty 

around the turn of the millennia and during the period coinciding with the Trump 

Administration. Recalling Li et al. (2022) and Noailly et al. (2022), since the uncertainty during 

the Trump Administration is possibly linked to policies that are not in favor of mitigating 

climate change and promoting non-renewable energy consumption, the magnitude of the shock 

to the CPU during that era may have amplified the negative association between the CPU and 

REC above the threshold. This is not necessarily the case with the ENVPU, considering that it 

is less volatile. 

 Hence, the results of the TAR model employing the ENVPU as the main variable of 

interest have led to a rather significant discovery, both in the endeavor to understand the climate 

policy and REC nexus, as well as the construction of an index with the purpose of capturing 

said uncertainty. With these set of results, we can reasonably conclude that there does exist a 

nonlinear threshold effect between the CPU and REC. However, due to the different 

directionality of said effects above the threshold, the best course of action would be to review 



the formulation of the policy uncertainty index that serves to measure climate policy 

uncertainty.  

 Despite this, considering the lack of volatility in the ENVPU index as well as the set of 

results from Table 6 and Table 8, it can be inferred that economic actors take a “just-in-case” 

policy approach when uncertainty moves beyond a certain threshold. Considering the prior 

discussions on the supportive political stances of all of the administrations prior to the Trump 

Administration, it can be understood that a “just-in-case” policy approach is done in 

anticipation of supportive policies that support the mitigation of climate change. 

 

V. Conclusion

Climate change is a crucial concern for the future of the planet, which has its influence on the 

global economy as well as the environment. With various international agreements and national 

efforts to achieve carbon neutrality, it is important to understand not just what policies need to 

be implemented, but how they should be delivered. Due to this immense global target, as the 

goal of the recent COP26 is to attain net zero emissions, understanding how policies are 

implemented and how uncertainty affects the behavior of economic actors towards renewable 

energy consumption are important. 

The main results indicate that there exists a nonlinear threshold effect of climate policy 

uncertainty, both as proxied by the CPU and ENVPU, on REC. In the first set of results, the 

effect of the CPU on the REC above a certain threshold is negative, implying that companies 

follow a “wait and see” policy, in accordance with Syed et al. (2023). Essentially, consumers 

would reduce their renewable energy consumption for other sources to sidestep the investment 

risks linked with renewable alternatives. 

To test the robustness of this model, we included further analysis using the RECHH, in 

which we discovered a different effect. Though the threshold effect still holds, the directionality 

becomes positive, implying a “just-in-case” policy approach, in which consumers will increase 

REC if uncertainty persists, expecting more supportive policies in the future. This is in 

accordance with Zhou et al. (2023), who had also observed a positive association between CPU 

and REC in most time periods.  

To explore the possibility of different effects of CPU on REC based on the context of 

the shocks to the CPU, we follow the findings of Li et al. (2022) and Noailly et al. (2022) by 

excluding the Trump Administration observations to proxy for a positive CPU. Although we 

notice that this is a challenging assumption, following the policy reviews of several past papers 



(Wampler, 2015; Royden, 2002; Blanchard, 2003) and the findings of Li et al. (2022), we 

believe that this is a reasonable assumption for exploring this possible dynamic. Our findings 

suggest that, without the Trump Administration observations, the results of the effect of CPU 

on REC and RECHH become more positive, increasing by 0.005 and 0.046 percentage points, 

respectively, despite the result of the effect of CPU on REC still being negative above the 

threshold.  

An additional robustness check was added using the ENVPU by Noailly et al. (2022) 

to see whether the formation of the climate policy uncertainty index had any effect on the 

results. While the results of this new estimation diverge from the main findings, since the 

threshold effect of the ENVPU on REC is positive, we find a crucial insight. Since the ENVPU 

has a superior recall rate compared to the CPU, it has lower volatility and captures more true 

positives, which may affect the results of the model. Moreover, unlike the CPU, the ENVPU 

does not exacerbate the shock during the Trump Administration.  

Though the results differ, we can still reasonably conclude that there does exist a 

nonlinear threshold effect of the climate policy uncertainty on REC, regardless of which index 

is utilized in the estimation. Despite the ambiguity in the results, considering the previous 

discussions on the robustness checks, we can conclude that there seems to be a positive effect 

of climate policy uncertainty on renewable energy consumption above the threshold. As such, 

in accordance with Zhou et al. (2023) and Li et al. (2022), it would seem that economic actors 

adopt a “just-in-case” policy approach towards REC when CPU surpasses a certain threshold. 

There are several limitations to consider in this study, namely the inability to account 

for the contextual dynamics underlying the CPU index. Unlike economic policy uncertainty, 

in which the positivity or negativity of a given policy requires subjective judgements regarding 

different trade-offs, climate policy can be objectively discerned based on its stance on 

mitigating climate change and on supporting the environment (Basaglia et al., 2022). Although 

imperfect, this paper tries to account for this with the estimation without the Trump 

Administration, by assuming that we would have a generally positive CPU index. The 

unavailability of raw data further limits this study, as we are not able to infer on the Optimistic-

CPU and Pessimistic-CPU indices such as the ones developed by Berestycki et al. (2022) and 

Basaglia et al. (2022). Thus, a recommendation for future academic research on climate policy 

uncertainty would be to incorporate the dynamic nature of this uncertainty. It would also be 

better to follow the approach of Noailly et al. (2022) to ensure better predictions in the 

development of the index, while also following Berestycki et al. (2022) and Basaglia et al. 

(2022) to capture the positive and negative dynamics. 



As for policymakers, a key insight from these results is to ensure that uncertainty is 

beyond a certain threshold, or to deliver policies effectively to such a case that consumers 

would behave as if they are under the threshold. Enhancing clarity and certainty for consumers 

could be a better solution, as this would let other factors determine the REC, and policymakers 

can thus focus on creating policies that affect such factors to drive an increase in the REC. As 

for developing countries, this study has two implications. The first is in accordance with the 

general recommendation of ensuring that uncertainty is low. The second is to recognize that, 

should uncertainty grow beyond a certain threshold, the context of the policy itself, be it for or 

against carbon neutrality, for instance, could change how the uncertainty affects REC. The 

“just-in-case” policy by consumers might not be as generally applied in developing countries, 

as we derive our results from a developed country with a history of policies supporting carbon 

neutrality. Due to that, if the policymakers in developing countries deem this effort for carbon 

neutrality to be important, then they should implement policies that do not hinder this initiative, 

as even if uncertainty goes beyond a certain level, the behavior of consumers might still be in 

favor of consuming more renewable energy. 
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4.5 Appendix 
Appendix: McLeod-Li Test for Linearity on Each Series 

 

Figure A.1.1. McLeod-Li Test (Log-Transformed and Seasonally Differenced CPU) 

 

  

Figure A.1.2. McLeod-Li Test (Log-Transformed and Seasonally Differenced REC) 

 



  

Figure A.1.3. McLeod-Li Test (Log-Transformed and Seasonally Differenced ENVPU) 

 

  

Figure A.1.4. McLeod-Li Test (Log-Transformed and Seasonally Differenced CO2) 

 



  

Figure A.1.5. McLeod-Li Test (Log-Transformed and Seasonally Differenced IIP) 

 

  

Figure A.1.6. McLeod-Li Test (Log-Transformed and Seasonally Differenced WTI) 



 

Figure A.1.7. McLeod-Li Test (Log-Transformed and Seasonally Differenced RECHH) 
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